期刊论文详细信息
Czechoslovak Mathematical Journal
A Fiedler-like theory for the perturbed Laplacian
Israel Rocha1 
[1] Vilmar Trevisan, Instituto de Matemática, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, Rio Grande do Sul, Brazil
关键词: perturbed Laplacian matrix;    Fiedler vector;    algebraic connectivity;    graph partitioning;   
DOI  :  
学科分类:数学(综合)
来源: Akademie Ved Ceske Republiky
PDF
【 摘 要 】

The perturbed Laplacian matrix of a graph $G$ is defined as $L^{\mkern-15muD}=D-A$, where $D$ is any diagonal matrix and $A$ is a weighted adjacency matrix of $G$. We develop a Fiedler-like theory for this matrix, leading to results that are of the same type as those obtained with the algebraic connectivity of a graph. We show a monotonicity theorem for the harmonic eigenfunction corresponding to the second smallest eigenvalue of the perturbed Laplacian matrix over the points of articulation of a graph. Furthermore, we use the notion of Perron component for the perturbed Laplacian matrix of a graph and show how its second smallest eigenvalue can be characterized using this definition.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201910185266307ZK.pdf 190KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:22次