Czechoslovak Mathematical Journal | |
Some characterizations of harmonic Bloch and Besov spaces | |
Xi Fu1  Bowen Lu2  | |
[1] Department of Mathematics, Shaoxing University, No. 508, West Huancheng Road, Shaoxing 312000, Zhejiang, P. R. China;School of International Business, Zhejiang International Studies University, No. 140, Wensan Road, Hangzhou 310012, Zhejiang, P. R. China | |
关键词: harmonic function; Bloch space; Besov space; majorant; | |
DOI : | |
学科分类:数学(综合) | |
来源: Akademie Ved Ceske Republiky | |
【 摘 要 】
The relationship between weighted Lipschitz functions and analytic Bloch spaces has attracted much attention. In this paper, we define harmonic $\omega$-$\alpha$-Bloch space and characterize it in terms of $$\omega((1-|x|^2)^\beta(1-|y|^2)^{\alpha- \beta}) \Big| \frac{f(x)-f(y)}{x-y}\Big|$$ and $$\omega((1-|x|^2)^\beta(1-|y|^2)^{\alpha- \beta}) \Big| \frac{f(x)-f(y)}{|x|y-x'}\Big|$$ where $\omega$ is a majorant. Similar results are extended to harmonic little $\omega$-$\alpha$-Bloch and Besov spaces. Our results are generalizations of the corresponding ones in G. Ren, U. Kahler (2005).
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201910185110541ZK.pdf | 151KB | download |