期刊论文详细信息
Czechoslovak Mathematical Journal
On coincidence of Pettis and McShane integrability
Marián Fabian1 
[1] Mathematical Institute, Czech Academy of Sciences, Žitná 25, 115 67 Praha 1, Czech Republic
关键词: Pettis integral;    McShane integral;    MC-filling family;    uniform Eberlein compact space;    scalarly negligible function;    Lebesgue injection;    Hilbert generated space;    strong Markuševič basis;    adequate inflation;   
DOI  :  
学科分类:数学(综合)
来源: Akademie Ved Ceske Republiky
PDF
【 摘 要 】

R. Deville and J. Rodriguez proved that, for every Hilbert generated space $X$, every Pettis integrable function $f [0,1]\rightarrow X$ is McShane integrable. R. Avilés, G. Plebanek, and J. Rodríguez constructed a weakly compactly generated Banach space $X$ and a scalarly null (hence Pettis integrable) function from $[0,1]$ into $X$, which was not McShane integrable. We study here the mechanism behind the McShane integrability of scalarly negligible functions from $[0,1]$ (mostly) into $C(K)$ spaces. We focus in more detail on the behavior of several concrete Eberlein (Corson) compact spaces $K$, that are not uniform Eberlein, with respect to the integrability of some natural scalarly negligible functions from $[0,1]$ into $C(K)$ in McShane sense.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201910184173324ZK.pdf 276KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:1次