| Czechoslovak Mathematical Journal | |
| Boundedness of Stein's square functions and Bochner-Riesz means associated to operators on Hardy spaces | |
| Xuefang 1  | |
| [1] College of Mathematics and Information Science, Heibei Normal University, No. 20 South 2nd Ring Road (East), Shijiazhuang, Hebei Prov., 050024, P. R. China | |
| 关键词: non-negative self-adjoint operator; Stein's square function; Bochner-Riesz means; Davies-Gaffney estimate; molecule Hardy space; | |
| DOI : | |
| 学科分类:数学(综合) | |
| 来源: Akademie Ved Ceske Republiky | |
PDF
|
|
【 摘 要 】
Let $(X, d, \mu)$ be a metric measure space endowed with a distance $d$ and a nonnegative Borel doubling measure $\mu$. Let $L$ be a non-negative self-adjoint operator of order $m$ on $L^2(X)$. Assume that the semigroup $ e^{-tL}$ generated by $L$ satisfies the Davies-Gaffney estimate of order $m$ and $L$ satisfies the Plancherel type estimate. Let $H^p_L(X)$ be the Hardy space associated with $L.$ We show the boundedness of Stein's square function ${\mathcal G}_{\delta}(L)$ arising from Bochner-Riesz means associated to $L$ from Hardy spaces $H^p_L(X)$ to $L^p(X)$, and also study the boundedness of Bochner-Riesz means on Hardy spaces $H^p_L(X)$ for $0
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201910183203233ZK.pdf | 232KB |
PDF