| Czechoslovak Mathematical Journal | |
| On some properties of the Laplacian matrix revealed by the RCM algorithm | |
| Miguel Rebollo1  Francisco Pedroche2  | |
| [1] Carlos Carrascosa,Alberto Palomares, Departament de Sistemes Informátics i Computació, Universitat Politècnica de València, Cam'i de Vera s/n. 46022. València, Spain;Institut de Matemàtica Multidisciplinària, Universitat Politècnica de València, Cam'i de Vera s/n. 46022. València, Spain | |
| 关键词: ordering algorithm; reverse Cuthill-McKee algorithm; graph partitioning; Laplacian matrix; | |
| DOI : | |
| 学科分类:数学(综合) | |
| 来源: Akademie Ved Ceske Republiky | |
PDF
|
|
【 摘 要 】
In this paper we present some theoretical results about the irreducibility of the Laplacian matrix ordered by the Reverse Cuthill-McKee (RCM) algorithm. We consider undirected graphs with no loops consisting of some connected components. RCM is a well-known scheme for numbering the nodes of a network in such a way that the corresponding adjacency matrix has a narrow bandwidth. Inspired by some properties of the eigenvectors of a Laplacian matrix, we derive some properties based on row sums of a Laplacian matrix that was reordered by the RCM algorithm. One of the theoretical results serves as a basis for writing an easy MATLAB code to detect connected components, by using the function "symrcm" of MATLAB. Some examples illustrate the theoretical results.
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201910182570705ZK.pdf | 198KB |
PDF