期刊论文详细信息
Czechoslovak Mathematical Journal | |
Spectral radius and Hamiltonicity of graphs with large minimum degree | |
Vladimir Nikiforov1  | |
[1] Department of Mathematical Sciences, University of Memphis, 3720 Alumni Ave, Memphis, 38152, Tennessee, USA | |
关键词: Hamiltonian cycle; Hamiltonian path; minimum degree; spectral radius; | |
DOI : | |
学科分类:数学(综合) | |
来源: Akademie Ved Ceske Republiky | |
【 摘 要 】
Let $G$ be a graph of order $n$ and $\lambda( G) $ the spectral radius of its adjacency matrix. We extend some recent results on sufficient conditions for Hamiltonian paths and cycles in $G$. One of the main results of the paper is the following theorem:Let $k\geq2,$ $n\geq k^3+k+4,$ and let $G$ be a graph of order $n$, with minimum degree $\delta(G) \geq k.$ If \lambda( G) \geq n-k-1, then $G$ has a Hamiltonian cycle, unless $G=K_1\vee(K_{n-k-1}+K_k)$ or $G=K_k\vee(K_{n-2k}+\bar{K}_k).$
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201910181935163ZK.pdf | 156KB | download |