期刊论文详细信息
Czechoslovak Mathematical Journal
Spectral radius and Hamiltonicity of graphs with large minimum degree
Vladimir Nikiforov1 
[1] Department of Mathematical Sciences, University of Memphis, 3720 Alumni Ave, Memphis, 38152, Tennessee, USA
关键词: Hamiltonian cycle;    Hamiltonian path;    minimum degree;    spectral radius;   
DOI  :  
学科分类:数学(综合)
来源: Akademie Ved Ceske Republiky
PDF
【 摘 要 】

Let $G$ be a graph of order $n$ and $\lambda( G) $ the spectral radius of its adjacency matrix. We extend some recent results on sufficient conditions for Hamiltonian paths and cycles in $G$. One of the main results of the paper is the following theorem:Let $k\geq2,$ $n\geq k^3+k+4,$ and let $G$ be a graph of order $n$, with minimum degree $\delta(G) \geq k.$ If \lambda( G) \geq n-k-1, then $G$ has a Hamiltonian cycle, unless $G=K_1\vee(K_{n-k-1}+K_k)$ or $G=K_k\vee(K_{n-2k}+\bar{K}_k).$

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201910181935163ZK.pdf 156KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:21次