期刊论文详细信息
Applications of mathematics
Existence of solutions for nonlinear nonmonotone evolution equations in Banach spaces with anti-periodic boundary conditions
Sahbi Boussandel^11 
[1] Faculty of Sciences of Bizerte, Department of Mathematics, 7021 Jarzouna Bizerte, University of Carthage, Laboratoire EDP et Applications LR03ES04, Bizerte, Tunisia^1
关键词: existence of solutions;    anti-periodic;    monotone operator;    maximal monotone operator;    Schaefer fixed-point theorem;    monotonicity method;    diffusion equation;   
DOI  :  10.21136/AM.2018.0136-18
学科分类:应用数学
来源: Akademie Ved Ceske Republiky
PDF
【 摘 要 】

The paper is devoted to the study of the existence of solutions for nonlinear nonmonotone evolution equations in Banach spaces involving anti-periodic boundary conditions. Our approach in this study relies on the theory of monotone and maximal monotone operators combined with the Schaefer fixed-point theorem and the monotonicity method. We apply our abstract results in order to solve a diffusion equation of Kirchhoff type involving the Dirichlet $p$-Laplace operator.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201910181865215ZK.pdf 187KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:15次