| Czechoslovak Mathematical Journal | |
| Certain decompositions of matrices over Abelian rings | |
| Nahid Ashrafi, Marjan Sheibani, Huanyin Chen1  | |
| 关键词: idempotent element; nilpotent element; nil clean ring; weakly nil clean ring; | |
| DOI : 10.21136/CMJ.2017.0677-15 | |
| 学科分类:数学(综合) | |
| 来源: Akademie Ved Ceske Republiky | |
PDF
|
|
【 摘 要 】
A ring $R$ is (weakly) nil clean provided that every element in $R$ is the sum of a (weak) idempotent and a nilpotent. We characterize nil and weakly nil matrix rings over abelian rings. Let $R$ be abelian, and let $n\in{\Bbb N}$. We prove that $M_n(R)$ is nil clean if and only if $R/J(R)$ is Boolean and $M_n(J(R))$ is nil. Furthermore, we prove that $R$ is weakly nil clean if and only if $R$ is periodic; $R/J(R)$ is ${\Bbb Z}_3$, $B$ or ${\Bbb Z}_3\oplus B$ where $B$ is a Boolean ring, and that $M_n(R)$ is weakly nil clean if and only if $M_n(R)$ is nil clean for all $n\geq2$.
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201910181119062ZK.pdf | 125KB |
PDF