期刊论文详细信息
Czechoslovak Mathematical Journal
On the bounds of Laplacian eigenvalues of $k$-connected graphs
Yaoping Hou1  Xiaodan Chen2 
[1] Department of Mathematics, Hunan Normal University, No. 15, Taozihu Road, Changsha, Hunan, P. R. China;Department of Mathematics, Hunan Normal University, No. 15, Taozihu Road, Changsha, Hunan, P. R. China, and College of Mathematics and Information Science, Guangxi University, No. 100, Daxue Road, Nanning, Guangxi, P. R. China
关键词: $k$-connected graph;    non-regular graph;    algebraic connectivity;    Laplacian spectral radius;    maximum degree;   
DOI  :  
学科分类:数学(综合)
来源: Akademie Ved Ceske Republiky
PDF
【 摘 要 】

Let $\mu_{n-1}(G)$ be the algebraic connectivity, and let $\mu_1(G)$ be the Laplacian spectral radius of a $k$-connected graph $G$ with $n$ vertices and $m$ edges. In this paper, we prove that \begin{equation*} \mu_{n-1}(G)\geq\frac{2nk^2}{(n(n-1)-2m)(n+k-2)+2k^2}, \end{equation*} with equality if and only if $G$ is the complete graph $K_n$ or $K_n-e$. Moreover, if $G$ is non-regular, then \begin{equation*} \mu_1(G)<2\Delta-\frac{2(n\Delta-2m)k^2}{2(n\Delta-2m)(n^2-2n+2k)+nk^2}, \end{equation*} where $\Delta$ stands for the maximum degree of $G$. Remark that in some cases, these two inequalities improve some previously known results.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201910180787178ZK.pdf 138KB PDF download
  文献评价指标  
  下载次数:15次 浏览次数:11次