| Journal of Advanced Ceramics | |
| Electromechanical properties of Ce-doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoceramics | |
|   1    1    2    3    3  | |
| [1] 0000 0001 0940 1669, grid.6546.1, Institute of Materials Science, Technische Universität Darmstadt, 64287, Darmstadt, Germany;0000 0001 2336 6580, grid.7605.4, Department of Chemistry, NIS and INSTM Reference Centre, Università di Torino, 10125, Torino, Italy;grid.419477.8, Semiconductor Division, Materials and Energy Research Center, 31787/316, Karaj, Iran; | |
| 关键词: lead-free piezoceramic; (Ba,Ca)(Zr,Ti)O (BCZT); cerium; actuator; | |
| DOI : 10.1007/s40145-018-0304-2 | |
| 来源: publisher | |
PDF
|
|
【 摘 要 】
Lead-free piezoceramics based on the (Ba, Ca)(Zr, Ti)O3 (BCZT) system exhibit excellent electromechanical properties for low-temperature actuation applications, but suffer from relatively high processing temperatures. Here we demonstrate an approach for the reduction of the sintering temperature and simultaneous increase of the electromechanical strain response of (Ba, Ca)(Zr, Ti)O3 piezoceramics by aliovalent doping with Ce. The samples were prepared by solid state synthesis and their crystallographic structure, dielectric, ferroelectric, and electromechanical properties were investigated. The highest d*33 value of 1189 pm/V was obtained for the sample with 0.05 mol% Ce, substituted on the A-site of the perovskite lattice. The results indicate a large potential of these materials for off-resonance piezoelectric actuators.
【 授权许可】
CC BY
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201910104262060ZK.pdf | 2110KB |
PDF