Journal of High Energy Physics | |
Numerical stochastic perturbation theory applied to the twisted Eguchi-Kawai model | |
  1    1    2    2    3    4  | |
[1] 0000 0000 8711 3200, grid.257022.0, Graduate School of Science, Hiroshima University, 739-8526, Higashi-Hiroshima, Japan;0000 0000 8711 3200, grid.257022.0, Graduate School of Science, Hiroshima University, 739-8526, Higashi-Hiroshima, Japan;0000 0000 8711 3200, grid.257022.0, Core of Research for the Energetic Universe, Hiroshima University, 739-8526, Higashi-Hiroshima, Japan;0000 0000 8711 3200, grid.257022.0, Graduate School of Science, Hiroshima University, 739-8526, Higashi-Hiroshima, Japan;RIKEN Center for Computational Science, 650-0047, Kobe, Japan;0000000119578126, grid.5515.4, Instituto de F´ısica Teórica UAM/CSIC, Universidad Autónoma de Madrid, Nicolás Cabrera 13-15, E-28049, Madrid, Spain;0000000119578126, grid.5515.4, Departamento de F´ısica Teórica, Módulo 15, Universidad Autónoma de Madrid, Cantoblanco, E-28049, Madrid, Spain; | |
关键词: Lattice QCD; 1/N Expansion; Perturbative QCD; | |
DOI : 10.1007/JHEP06(2019)127 | |
来源: publisher | |
【 摘 要 】
We present the results of an exploratory study of the numerical stochastic perturbation theory (NSPT) applied to the four dimensional twisted Eguchi-Kawai (TEK) model. We employ a Kramers type algorithm based on the Generalized Hybrid Molecular Dynamics (GHMD) algorithm. We have computed the perturbative expansion of square Wilson loops up to O(g8). The results of the first two coefficients (up to O(g4)) have a high precision and match well with the exact values. The next two coefficients can be determined and even extrapolated to large N, where they should coincide with the corresponding coefficients for ordinary Yang-Mills theory on an infinite lattice. Our analysis shows the behaviour of the probability distribution for each coefficient tending to Gaussian for larger N. The results allow us to establish the requirements to extend this analysis to much higher order.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201910094858835ZK.pdf | 1246KB | download |