期刊论文详细信息
| Electronic Journal Of Combinatorics | |
| Erdős-Ginzburg-Ziv Constants by Avoiding Three-Term Arithmetic Progressions | |
| Jacob Fox1  | |
| 关键词: Erdős-Ginzburg-Ziv constant; Arithmetic progressions; Probabilistic method; Polynomial method; | |
| DOI : | |
| 学科分类:离散数学和组合数学 | |
| 来源: Electronic Journal Of Combinatorics | |
PDF
|
|
【 摘 要 】
For a finite abelian group $G$, The Erdős-Ginzburg-Ziv constant $\mathfrak{s}(G)$ is the smallest $s$ such that every sequence of $s$ (not necessarily distinct) elements of $G$ has a zero-sum subsequence of length $\operatorname{exp}(G)$. For a prime $p$,
【 授权许可】
Others
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201909028619349ZK.pdf | 264KB |
PDF