期刊论文详细信息
Electronic Journal Of Combinatorics | |
Incidences with Curves in $\mathbb{R}^d$ | |
Micha Sharir1  | |
关键词: Geometic incidences; Discrete geometry; Polynomial partitioning; Polynomial curves; | |
DOI : | |
学科分类:离散数学和组合数学 | |
来源: Electronic Journal Of Combinatorics | |
【 摘 要 】
We prove that the number of incidences between $m$ points and $n$ bounded-degree curves with $k$ degrees of freedom in ${\mathbb R}^d$ is\[ O\left(m^{\frac{k}{dk-d+1}+\varepsilon}n^{\frac{dk-d}{dk-d+1}}+ \sum_{j=2}^{d-1} m^{\frac{k}{jk-j+1}+\varepsilon}n^
【 授权许可】
Others
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201909025671861ZK.pdf | 361KB | download |