期刊论文详细信息
Bayesian Analysis
Adaptive Bayesian Density Estimation in Lp-metrics with Pitman-Yor or Normalized Inverse-Gaussian Process Kernel Mixtures
Catia Scricciolo1 
关键词: adaptation;    nonparametric density estimation;    normalized inverseGaussian process;    Pitman-Yor process;    posterior contraction rate;    sinc kernel;   
DOI  :  10.1214/14-BA863
学科分类:统计和概率
来源: Institute of Mathematical Statistics
PDF
【 摘 要 】

We consider Bayesian nonparametric density estimation using a Pitman-Yor or a normalized inverse-Gaussian process convolution kernel mixture as the prior distribution for a density. The procedure is studied from a frequentist perspective. Using the stick-

【 授权许可】

Others   

【 预 览 】
附件列表
Files Size Format View
RO201909025274501ZK.pdf 614KB PDF download
  文献评价指标  
  下载次数:14次 浏览次数:10次