期刊论文详细信息
Electronic Journal Of Combinatorics | |
Minimal Multiple Blocking Sets | |
Anurag Bishnoi1  | |
关键词: Finite geometry; Blocking set; Expander mixing lemma; Symmetric design; | |
DOI : | |
学科分类:离散数学和组合数学 | |
来源: Electronic Journal Of Combinatorics | |
【 摘 要 】
We prove that a minimal $t$-fold blocking set in a finite projective plane of order $n$ has cardinality at most \[\frac{1}{2} n\sqrt{4tn - (3t + 1)(t - 1)} + \frac{1}{2} (t - 1)n + t.\] This is the first general upper bound on the size of minimal $t$-fold
【 授权许可】
Others
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201909021813717ZK.pdf | 285KB | download |