期刊论文详细信息
Annals Of Geophysics
2D inverse modeling of residual gravity anomalies from Simple geometric shapes using Modular Feed-forward Neural Network
Alireza Hajian1  Ata Eshaghzadeh3 
[1] tel: +98 936 0161579 . Fax: +98 11 52286946;Department of Physics, Najafabad Branch, Islamic Azad University, Najafabad, Iran (hajian@iaun.a;Graduate student of geophysics, Institute of Geophysics, University of Tehran, Iran (eshagh@alumni.ut.ac.ir) &
关键词: Modular Feed-forward Neural Network (MFNN);   
DOI  :  10.4401/ag-7540
学科分类:地球化学与岩石
来源: Istituto Nazionale Di Geofisica E Vulcanologia
PDF
【 摘 要 】

In this paper, we introduce a new method called Modular Feed-forward Neural Network (MFNN) to find the shape factor, depth and amplitude coefficient parameters related to simple geometric-shaped models such as sphere, horizontal cylinder, and vertical cyl

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201909021216459ZK.pdf 3760KB PDF download
  文献评价指标  
  下载次数:24次 浏览次数:24次