期刊论文详细信息
Annals Of Geophysics | |
2D inverse modeling of residual gravity anomalies from Simple geometric shapes using Modular Feed-forward Neural Network | |
Alireza Hajian1  Ata Eshaghzadeh3  | |
[1] tel: +98 936 0161579 . Fax: +98 11 52286946;Department of Physics, Najafabad Branch, Islamic Azad University, Najafabad, Iran (hajian@iaun.a;Graduate student of geophysics, Institute of Geophysics, University of Tehran, Iran (eshagh@alumni.ut.ac.ir) & | |
关键词: Modular Feed-forward Neural Network (MFNN); | |
DOI : 10.4401/ag-7540 | |
学科分类:地球化学与岩石 | |
来源: Istituto Nazionale Di Geofisica E Vulcanologia | |
【 摘 要 】
In this paper, we introduce a new method called Modular Feed-forward Neural Network (MFNN) to find the shape factor, depth and amplitude coefficient parameters related to simple geometric-shaped models such as sphere, horizontal cylinder, and vertical cyl
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201909021216459ZK.pdf | 3760KB | download |