期刊论文详细信息
| Electronic Journal Of Combinatorics | |
| On Spherical Designs of Some Harmonic Indices | |
| Yan Zhu1  | |
| 关键词: Spherical designs of harmonic index; Gegenbauer polynomial; Fisher type lower bound; Tight design; Larman-Rogers-Seidel'; s theorem; Delsarte'; s method; Semidefinite prog; | |
| DOI : | |
| 学科分类:离散数学和组合数学 | |
| 来源: Electronic Journal Of Combinatorics | |
PDF
|
|
【 摘 要 】
A finite subset $Y$ on the unit sphere $S^{n-1} \subseteq \mathbb{R}^n$ is called a spherical design of harmonic index $t$, if the following condition is satisfied: $\sum_{\mathbf{x}\in Y}f(\mathbf{x})=0$ for all real homogeneous harmonic polynomials $f(x
【 授权许可】
Others
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201909020499349ZK.pdf | 397KB |
PDF