期刊论文详细信息
G3: Genes, Genomes, Genetics
Multi-environment Genomic Prediction of Plant Traits Using Deep Learners With Dense Architecture
article
Abelardo Montesinos-López1  Osval A. Montesinos-López2  Daniel Gianola3  José Crossa4  Carlos M. Hernández-Suárez5 
[1] Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, 44430, Guadalajara, Jalisco, México;Facultad de Telemática, Universidad de Colima, 28040, Colima, México;Departments of Animal Sciences, Dairy Science, and Biostatistics and Medical Informatics, University of Wisconsin-Madison, 53706, Madison, Wisconsin;International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Ciudad de México, México;Facultad de Ciencias, Universidad de Colima, 28040, Colima, Colima, México
关键词: GBLUP;    deep learning;    neural network;    genomic prediction;    prediction accuracy;    GenPred;    Shared Data Resources;   
DOI  :  10.1534/g3.118.200740
学科分类:社会科学、人文和艺术(综合)
来源: Genetics Society of America
PDF
【 摘 要 】

Genomic selection is revolutionizing plant breeding and therefore methods that improve prediction accuracy are useful. For this reason, active research is being conducted to build and test methods from other areas and adapt them to the context of genomic selection. In this paper we explore the novel deep learning (DL) methodology in the context of genomic selection. We compared DL methods with densely connected network architecture to one of the most often used genome-enabled prediction models: Genomic Best Linear Unbiased Prediction (GBLUP). We used nine published real genomic data sets to compare a fraction of all possible deep learning models to obtain a “meta picture” of the performance of DL methods with densely connected network architecture. In general, the best predictions were obtained with the GBLUP model when genotype×environment interaction (G×E) was taken into account (8 out of 9 data sets); when the interactions were ignored, the DL method was better than the GBLUP in terms of prediction accuracy in 6 out of the 9 data sets. For this reason, we believe that DL should be added to the data science toolkit of scientists working on animal and plant breeding. This study corroborates the view that there are no universally best prediction machines.

【 授权许可】

CC BY|CC BY-NC   

【 预 览 】
附件列表
Files Size Format View
RO201907120006408ZK.pdf 2024KB PDF download
  文献评价指标  
  下载次数:15次 浏览次数:2次