期刊论文详细信息
International Journal of Clinical and Experimental Pathology
Indoleamine 2,3-dioxygenase-1 (IDO1) in human endometrial stromal cells induces macrophage tolerance through interleukin-33 in the progression of endometriosis
Jie Mei1 
关键词: Endometriosis;    indoleamine 2;    3-dioxygenase-1;    macrophage;    endometrial stromal cell;    interleukin-33;    cytokine;   
DOI  :  
学科分类:生理学与病理学
来源: e-Century Publishing Corporation
PDF
【 摘 要 】

In the peritoneal fluid, macrophages and their secretory cytokines are essential for endometriosis, but the factors that favor their involvement in the endometriosis-associated inflammatory response are still elusive. Given the anomalous expression of indoleamine 2,3-dioxygenase-1 (IDO1) in endometrial stromal cells (ESCs) and its potentially important roles in immune modulation, we aimed to determine the effects of IDO1 in ESCs on macrophages and the mechanism of those effects. Normal ESCs and ectopic ESCs transfected with the SD11-IDO1 shRNA (short hairpin RNA) or vector-only plasmid SD11 were subsequently co-cultured with peripheral blood (PB)-derived monocytes (PBMC)-driven macrophages directly and indirectly. Cytokine production was determined by analyzing the supernatant of the co-culture unit by enzyme-linked immunosorbent assay (ELISA). The phenotypes and the phagocytic ability of the macrophages were determined by flow cytometry. Compared to normal ESCs, the PBMC-driven macrophages co-cultured with ectopic ESCs displayed lower phagocytic ability. Additionally, macrophages co-cultured with ectopic ESCs exhibited higher levels of CD163 and CD209 and lower levels of HLA-DR and CD11c. Moreover, both the intracellular expression and extracellular secretion of interleukin-10 (IL-10) and transforming growth factor-β1 (TGF-β1) were significantly increased, while that of IL-12p70 was decreased in macrophages after being co-cultured with ectopic ESCs. However, there was no significant difference in macrophage phagocytic ability, immunophenotype or cytokine secretion between the direct and indirect co-culture units. Reversely, SD11-IDO1 shRNA transfection of ectopic ESCs could abrogate the decreased phagocytic ability and alternative activation of macrophages in ectopic ESC-macrophage co-culture unit, suggesting that higher IDO1 in ectopic ESCs was indispensable for the induction of macrophage tolerance. Furthermore, the decrease in phagocytic macrophages and alternatively activated macrophages induced by IDO1 in ectopic ESCs was reversed by the addition of an IL-33 inhibitor, that is, soluble ST2 (sST2). Therefore, through the activation of IL-33, the increased expression of IDO1 in ectopic ESCs contributed to the truncated phagocytic ability of macrophages in endometriosis.

【 授权许可】

CC BY-NC   

【 预 览 】
附件列表
Files Size Format View
RO201904039364545ZK.pdf 2796KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:7次