期刊论文详细信息
Commentationes mathematicae Universitatis Carolinae
On a question of $C_c(X)$
A. R. Olfati1 
关键词: zero-dimensional space;    strongly zero-dimensional space;    $\mathbb{N}$-compact space;    Banaschewski compactification;    character;    ring homomorphism;    functionally countable subring;    functional separability;   
DOI  :  10.14712/1213-7243.2015.161
学科分类:物理化学和理论化学
来源: Univerzita Karlova v Praze * Matematicko-Fyzikalni Fakulta / Charles University in Prague, Faculty of Mathematics and Physics
PDF
【 摘 要 】

In this short article we answer the question posed in Ghadermazi~M., Karamzadeh O.A.S., Namdari M., {\it On the functionally countable subalgebra of $C(X)$}, Rend. Sem. Mat. Univ. Padova {\bf 129} (2013), 47--69. It is shown that $C_c(X)$ is isomorphic to some ring of continuous functions if and only if $\upsilon_0 X$ is functionally countable. For a strongly zero-dimensional space $X$, this is equivalent to say that $X$ is functionally countable. Hence for every $P$-space it is equivalent to pseudo-$\aleph_0$-compactness.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201904039145495ZK.pdf 59KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:11次