期刊论文详细信息
| Commentationes mathematicae Universitatis Carolinae | |
| On a question of $C_c(X)$ | |
| A. R. Olfati1  | |
| 关键词: zero-dimensional space; strongly zero-dimensional space; $\mathbb{N}$-compact space; Banaschewski compactification; character; ring homomorphism; functionally countable subring; functional separability; | |
| DOI : 10.14712/1213-7243.2015.161 | |
| 学科分类:物理化学和理论化学 | |
| 来源: Univerzita Karlova v Praze * Matematicko-Fyzikalni Fakulta / Charles University in Prague, Faculty of Mathematics and Physics | |
PDF
|
|
【 摘 要 】
In this short article we answer the question posed in Ghadermazi~M., Karamzadeh O.A.S., Namdari M., {\it On the functionally countable subalgebra of $C(X)$}, Rend. Sem. Mat. Univ. Padova {\bf 129} (2013), 47--69. It is shown that $C_c(X)$ is isomorphic to some ring of continuous functions if and only if $\upsilon_0 X$ is functionally countable. For a strongly zero-dimensional space $X$, this is equivalent to say that $X$ is functionally countable. Hence for every $P$-space it is equivalent to pseudo-$\aleph_0$-compactness.
【 授权许可】
CC BY
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201904039145495ZK.pdf | 59KB |
PDF