期刊论文详细信息
Commentationes mathematicae Universitatis Carolinae | |
Infinite dimensional linear groups with a large family of $G$-invariant subspaces | |
L. A. Kurdachenko1  | |
关键词: vector space; linear groups; periodic groups; soluble groups; invariant subspaces; | |
DOI : | |
学科分类:物理化学和理论化学 | |
来源: Univerzita Karlova v Praze * Matematicko-Fyzikalni Fakulta / Charles University in Prague, Faculty of Mathematics and Physics | |
【 摘 要 】
Let $F$ be a field, $A$ be a vector space over $F$, $\operatorname{GL}(F,A)$ be the group of all automorphisms of the vector space $A$. A subspace $B$ is called almost $G$-invariant, if $\dim _{F}(B/\operatorname{Core}_{G}(B))$ is finite. In the current article, we begin the study of those subgroups $G$ of $\operatorname{GL}(F,A)$ for which every subspace of $A$ is almost $G$-invariant. More precisely, we consider the case when $G$ is a periodic group. We prove that in this case $A$ includes a $G$-invariant subspace $B$ of finite codimension whose subspaces are $G$-invariant.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201904038645808ZK.pdf | 85KB | download |