Commentationes mathematicae Universitatis Carolinae | |
Orthosymmetric bilinear map on Riesz spaces | |
Elmiloud Chil1  | |
关键词: orthosymmetric multilinear map; homogeneous polynomial; Riesz space; | |
DOI : 10.14712/1213-7243.2015.132 | |
学科分类:物理化学和理论化学 | |
来源: Univerzita Karlova v Praze * Matematicko-Fyzikalni Fakulta / Charles University in Prague, Faculty of Mathematics and Physics | |
【 摘 要 】
Let $E$ be a Riesz space, $F$ a Hausdorff topological vector space (t.v.s.). We prove, under a certain separation condition, that any orthosymmetric bilinear map $TE\times E\rightarrow F$ is automatically symmetric. This generalizes in certain way an earlier result by F. Ben Amor [{\it On orthosymmetric bilinear maps\/}, Positivity {\bf 14} (2010), 123--134]. As an application, we show that under a certain separation condition, any orthogonally additive homogeneous polynomial $PE\rightarrow F$ is linearly represented. This fits in the type of results by Y. Benyamini, S. Lassalle and J.L.G. Llavona [{\it Homogeneous orthogonally additive polynomials on Banach lattices\/}, Bulletin of the London Mathematical Society {\bf 38} (2006), no.~3 123--134].
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201904036741237ZK.pdf | 53KB | download |