Commentationes mathematicae Universitatis Carolinae | |
Coherent ultrafilters and nonhomogeneity | |
Jan Starý1  | |
关键词: nonhomogeneity; ultrafilter; Boolean algebra; untouchable point; | |
DOI : 10.14712/1213-7243.2015.123 | |
学科分类:物理化学和理论化学 | |
来源: Univerzita Karlova v Praze * Matematicko-Fyzikalni Fakulta / Charles University in Prague, Faculty of Mathematics and Physics | |
【 摘 要 】
We introduce the notion of a {\it coherent $P$-ultrafilter\/} on a complete ccc Boolean algebra, strengthening the notion of a $P$-point on $\omega$, and show that these ultrafilters exist generically under $\mathfrak c = \mathfrak d$. This improves the known existence result of Ketonen [{\it On the existence of $P$-points in the Stone-\v Cech compactification of integers\/}, Fund. Math. {\bf 92} (1976), 91--94]. Similarly, the existence theorem of Canjar [{\it On the generic existence of special ultrafilters\/}, Proc. Amer. Math. Soc. {\bf 110} (1990), no.~1, 233--241] can be extended to show that {\it coherently selective ultrafilters\/} exist generically under $\mathfrak c = \operatorname{cov}\mathcal M$. We use these ultrafilters in a topological application a coherent $P$-ultrafilter on an algebra $\mathcal B$ is an {\it untouchable point\/} in the Stone space of $\mathcal B$, witnessing its nonhomogeneity.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201904034890968ZK.pdf | 46KB | download |