期刊论文详细信息
Commentationes mathematicae Universitatis Carolinae | |
On isometrical extension properties of function spaces | |
Hisao Kato1  | |
关键词: linear extension of isometry; theorem of Banach and Mazur; Hilbert cube; Cantor set; | |
DOI : 10.14712/1213-7243.015.109 | |
学科分类:物理化学和理论化学 | |
来源: Univerzita Karlova v Praze * Matematicko-Fyzikalni Fakulta / Charles University in Prague, Faculty of Mathematics and Physics | |
【 摘 要 】
In this note, we prove that any ``bounded'' isometries of separable metric spaces can be represented as restrictions of linear isometries of function spaces $C(Q)$ and $C(\Delta)$, where $Q$ and $\Delta$ denote the Hilbert cube $[0,1]^{\infty}$ and a~Cantor set, respectively.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201904031309405ZK.pdf | 38KB | download |