期刊论文详细信息
Commentationes mathematicae Universitatis Carolinae
On isometrical extension properties of function spaces
Hisao Kato1 
关键词: linear extension of isometry;    theorem of Banach and Mazur;    Hilbert cube;    Cantor set;   
DOI  :  10.14712/1213-7243.015.109
学科分类:物理化学和理论化学
来源: Univerzita Karlova v Praze * Matematicko-Fyzikalni Fakulta / Charles University in Prague, Faculty of Mathematics and Physics
PDF
【 摘 要 】

In this note, we prove that any ``bounded'' isometries of separable metric spaces can be represented as restrictions of linear isometries of function spaces $C(Q)$ and $C(\Delta)$, where $Q$ and $\Delta$ denote the Hilbert cube $[0,1]^{\infty}$ and a~Cantor set, respectively.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201904031309405ZK.pdf 38KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:7次