| Commentationes mathematicae Universitatis Carolinae | |
| Hyperplane section ${\mathbb{O}\mathbb{P}}^2_0$ of the complex Cayley plane as the homogeneous space $\mathrm{F_4/P_4}$ | |
| Karel Pazourek1  | |
| 关键词: Cayley plane; octonionic contact structure; twistor fibration; parabolic geometry; Severi varieties; hyperplane section; exceptional geometry; | |
| DOI : | |
| 学科分类:物理化学和理论化学 | |
| 来源: Univerzita Karlova v Praze * Matematicko-Fyzikalni Fakulta / Charles University in Prague, Faculty of Mathematics and Physics | |
PDF
|
|
【 摘 要 】
We prove that the exceptional complex Lie group ${\mathrm{F}_4}$ has a transitive action on the hyperplane section of the complex Cayley plane ${\mathbb{O}\mathbb{P}}^2$. Although the result itself is not new, our proof is elementary and constructive. We use an explicit realization of the vector and spin actions of ${\mathrm{Spin}}(9,\mathbb{C})\leq {\mathrm{F}_4}$. Moreover, we identify the stabilizer of the ${\mathrm{F}_4}$-action as a parabolic subgroup ${\mathrm{P}_4}$ (with Levi factor $\mathrm{B_3T_1}$) of the complex Lie group ${\mathrm{F}_4}$. In the real case we obtain an analogous realization of ${\mathrm{F}_4}^{(-20)}/\P$.
【 授权许可】
CC BY
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201904030408782ZK.pdf | 114KB |
PDF