期刊论文详细信息
Frontiers in Psychology
A general non-linear multilevel structural equation mixture model
Augustin Kelava1 
关键词: latent variables;    semiparametric;    non-linear;    mixture distribution;    structural equation modeling;    multilevel;   
DOI  :  10.3389/fpsyg.2014.00748
学科分类:心理学(综合)
来源: Frontiers
PDF
【 摘 要 】

In the past 2 decades latent variable modeling has become a standard tool in the social sciences. In the same time period, traditional linear structural equation models have been extended to include non-linear interaction and quadratic effects (e.g., Klein and Moosbrugger, 2000), and multilevel modeling (Rabe-Hesketh et al., 2004). We present a general non-linear multilevel structural equation mixture model (GNM-SEMM) that combines recent semiparametric non-linear structural equation models (Kelava and Nagengast, 2012; Kelava et al., 2014) with multilevel structural equation mixture models (Muthén and Asparouhov, 2009) for clustered and non-normally distributed data. The proposed approach allows for semiparametric relationships at the within and at the between levels. We present examples from the educational science to illustrate different submodels from the general framework.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201904029951297ZK.pdf 1590KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:14次