期刊论文详细信息
Fixexd point theory and applications
Iterative methods for constrained convex minimization problem in Hilbert spaces
Ming Tian1  Li-Hua Huang1 
[1] College of Science, Civil Aviation University of China, Tianjin, China
关键词: iterative algorithm;    constrained convex minimization;    nonexpansive mapping;    fixed point;    variational inequality;   
DOI  :  10.1186/1687-1812-2013-105
学科分类:数学(综合)
来源: SpringerOpen
PDF
【 摘 要 】

In this paper, based on Yamada’s hybrid steepest descent method, a general iterative method is proposed for solving constrained convex minimization problem. It is proved that the sequences generated by proposed implicit and explicit schemes converge strongly to a solution of the constrained convex minimization problem, which also solves a certain variational inequality. MSC:58E35, 47H09, 65J15.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201904029681680ZK.pdf 377KB PDF download
  文献评价指标  
  下载次数:15次 浏览次数:12次