Frontiers in ICT | |
Optimization Strategies for Interactive Classification of Interstitial Lung Disease Textures | |
van Ginneken, Bram1  Wittenberg, Rianne2  Viergever, Max A.3  Schaefer-Prokop, Cornelia M.3  Grutters, Jan C.3  Tiehuis, Audrey M.4  Kockelkorn, Thessa T. J. P.6  7  Ramos, Rui7  de Jong, Pim A.8  Ramos, José8  | |
[1] Department of Pulmonology, Center of Interstitial Lung Diseases, St Antonius Hospital, Netherlands;Department of Radiology, Meander Medical Center, Netherlands;Department of Radiology, University Medical Center Utrecht, Netherlands;Diagnostic Image Analysis Group, Radboudumc, Netherlands;Heart and Lungs Division, University Medical Center Utrecht, Netherlands;Image Sciences Institute, University Medical Center Utrecht, Netherlands;Instituto de Engenharia Biomédica, Faculdade de Engenharia da Universidade do Porto, Portugal | |
关键词: Interactive annotation; Interstitial Lung Disease; texture; Classification; computer-aided diagnosis; | |
DOI : 10.3389/fict.2016.00033 | |
学科分类:计算机网络和通讯 | |
来源: Frontiers | |
【 摘 要 】
For computerized analysis of textures in interstitial lung disease, manual annotations of lung tissue are necessary. Since making these annotations is labor-intensive, we previously proposed an interactive annotation framework. In this framework, observers iteratively trained a classifier to distinguish the different texture types by correcting its classification errors. In this work, we investigated three ways to extend this approach, in order to decrease the amount of user interaction required to annotate all lung tissue in a CT scan. First, we conducted automatic classification experiments to test how data from previously annotated scans can be used for classification of the scan under consideration. We compared the performance of a classifier trained on data from one observer, a classifier trained on data from multiple observers, a classifier trained on consensus training data, and an ensemble of classifiers, each trained on data from different sources. Experiments were conducted without and with texture selection. In the former case, training data from all 8 textures was used. In the latter, only training data from the texture types present in the scan were used, and the observer would have to indicate textures contained in the scan to be analyzed. Second, we simulated interactive annotation to test the effects of (1) asking observers to perform texture selection before the start of annotation, (2) the use of a classifier trained on data from previously annotated scans at the start of annotation, when the interactive classifier is untrained, and (3) allowing observers to choose which interactive or automatic classification results they wanted to correct. Finally, various strategies for selecting the classification results that were presented to the observer were considered. Classification accuracies for all possible interactive annotation scenarios were compared. Using the best performing protocol, in which observers select the textures that should be distinguished in the scan and in which they can choose which classification results to use for correction, a median accuracy of 88% was reached. The results obtained using this protocol were significantly better than results obtained with other interactive or automatic classification protocols.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201904029403630ZK.pdf | 6918KB | download |