期刊论文详细信息
Boundary value problems
Approximation on the hexagonal grid of the Dirichlet problem for Laplace’s equation
Emine Celiker1  Adiguzel A. Dosiyev1 
[1] Department of Mathematics, Eastern Mediterranean University, Turkey
关键词: Laplace’s equation;    Dirichlet boundary value problem;    hexagonal grids;    matching operator;    interpolation for harmonic functions;    singularity;    Block-Grid method;   
DOI  :  10.1186/1687-2770-2014-73
学科分类:数学(综合)
来源: SpringerOpen
PDF
【 摘 要 】

The fourth order matching operator on the hexagonal grid is constructed. Its application to the interpolation problem of the numerical solution obtained by hexagonal grid approximation of Laplace’s equation on a rectangular domain is investigated. Furthermore, the constructed matching operator is applied to justify a hexagonal version of the combined Block-Grid method for the Dirichlet problem with corner singularity. Numerical examples are illustrated to support the analysis made. MSC:35A35, 35A40, 35C15, 65N06, 65N15, 65N22, 65N99.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201904029008635ZK.pdf 404KB PDF download
  文献评价指标  
  下载次数:14次 浏览次数:11次