期刊论文详细信息
Advances in Difference Equations
A new modified generalized Laguerre operational matrix of fractional integration for solving fractional differential equations on the half line
Mohammed M Alghamdi1  Taha M Taha2  Ali H Bhrawy2 
[1] Department of Mathematics, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt;Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
关键词: operational matrix;    modified generalized Laguerre polynomials;    tau method;    multi-term FDEs;    Riemann-Liouville fractional integration;   
DOI  :  10.1186/1687-1847-2012-179
学科分类:数学(综合)
来源: SpringerOpen
PDF
【 摘 要 】

In this paper, we derived a new operational matrix of fractional integration of arbitrary order for modified generalized Laguerre polynomials. The fractional integration is described in the Riemann-Liouville sense. This operational matrix is applied together with the modified generalized Laguerre tau method for solving general linear multi-term fractional differential equations (FDEs). Only small dimension of a modified generalized Laguerre operational matrix is needed to obtain a satisfactory result. Illustrative examples reveal that the present method is very effective and convenient for linear multi-term FDEs on a semi-infinite interval.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201904028362196ZK.pdf 262KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:21次