Boundary value problems | |
Discreteness of the spectrum of vectorial Schrödinger operators with δ -interactions | |
Xiaojing Zhao1  Guoliang Shi2  Xiaoyun Liu2  | |
[1] Department of Mathematics, Anyang Institute of Technology, Anyang, P.R. China;Department of Mathematics, Tianjin University, Tianjin, P.R. China | |
关键词: vectorial Schrödinger operators; δ-interactions; self-adjointness; discrete spectrum; 34B24; 34L05; 47e05; | |
DOI : 10.1186/s13661-016-0536-4 | |
学科分类:数学(综合) | |
来源: SpringerOpen | |
【 摘 要 】
This paper deals with the vectorial Schrödinger operators with δ-interactions generated byLX,A,Q:=−d2dx2+Q(x)+∑k=1∞Akδ(x−xk)$L_{X,A,Q}:=-\frac{d^{2}}{dx^{2}} +Q(x)+\sum_{k=1}^{\infty}A_{k}\delta(x-x_{k})$,x∈[0,+∞)$x\in[ 0,+\infty)$. First, we obtain an embedding inequality. Then using standard form methods, we prove that the operatorHX,A,Q$\mathbf{H}_{X,A,Q}$given in this paper is self-adjoint. Finally, a sufficient condition and a necessary condition are given for the spectrum of the operatorHX,A,Q$\mathbf {H}_{X,A,Q}$to be discrete. By giving additional restrictions on the symmetric potential matrixQ(x)$Q(x)$andAk$A_{k}$, we also give a necessary and sufficient condition for a special case. The conditions are analogous to Molchanov’s discreteness criteria.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201904027054243ZK.pdf | 1663KB | download |