期刊论文详细信息
Computer Science and Information Systems
LTR – MDTS structure – A structure for Multiple Dependent Time Series Prediction
MiloÅ¡ Racković1  Predrag Pecev2 
[1] Unversity of Novi Sad, Faculty of Sciences;Unversity of Novi Sad. Technical faculty “Mihajlo Pupin”
关键词: MLP;    Multiple Dependent Time Series;    LTR-MDTS structure;    Training parameter influence;    Neural Network Configuration;    Training Set Configuration and Optimization.;   
DOI  :  10.2298/CSIS150815004P
学科分类:社会科学、人文和艺术(综合)
来源: Computer Science and Information Systems
PDF
【 摘 要 】

The subject of research presented in this paper is to model a neural network structure and appropriate training algorithm that is most suited for multiple dependent time series prediction / deduction. The basic idea is to take advantage of neural networks in solving the problem of prediction of synchronized basketball referees’ movement during a basketball action. Presentation of time series stemming from the aforementioned problem, by using traditional Multilayered Perceptron neural networks (MLP), leads to a sort of paradox of backward time lapse effect that certain input and hidden layers nodes have on output nodes that correspond to previous moments in time. This paper describes conducted research and analysis of different methods of overcoming the presented problem. Presented paper is essentially split into two parts. First part gives insight on efforts that are put into training set configuration on standard Multi Layered Perceptron back propagation neural networks, in order to decrease backwards time lapse effects that certain input and hidden layers nodes have on output nodes. Second part of paper focuses on the results that a new neural network structure called LTR-MDTS provides. Foundation of LTR-MDTS design relies on a foundation on standard MLP neural networks with certain, left-to-right synapse removal to eliminate aforementioned backwards time lapse effect on the output nodes.

【 授权许可】

CC BY-NC-ND   

【 预 览 】
附件列表
Files Size Format View
RO201904026919253ZK.pdf 544KB PDF download
  文献评价指标  
  下载次数:16次 浏览次数:9次