期刊论文详细信息
Frontiers in Applied Mathematics and Statistics
Data-Driven Modeling and Prediction of Complex Spatio-Temporal Dynamics in Excitable Media
Herzog, Sebastian1  tter, Florentin2  Wö2  rgö3  Parlitz, Ulrich3 
[1] Max Planck Institute for Dynamics and Self-Organization, Germany;Third Institute of Physics and Bernstein Center for Computational Neuroscience, University of Göttingen, Germany
关键词: deep learning;    Conditional random fields;    excitable media;    spatio-temporal chaos;    Cardiac dynamics;    Nonlinear observer;   
DOI  :  10.3389/fams.2018.00060
学科分类:数学(综合)
来源: Frontiers
PDF
【 摘 要 】

Spatio-temporal chaotic dynamics in a two-dimensional excitable medium is (cross-) estimated using a machine learning method based on a convolutional neural network combined with a conditional random field. The performance of this approach is demonstrated using the four variables of the Bueno-Orovio-Fenton-Cherry model describing electrical excitation waves in cardiac tissue. Using temporal sequences of two-dimensional fields representing the values of one or more of the model variables as input the network successfully cross-estimated all variables and provides excellent forecasts when applied iteratively.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201904026647731ZK.pdf 4286KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:27次