期刊论文详细信息
Advances in Difference Equations
Homoclinic orbits for a class of second order dynamic equations on time scales via variational methods
Xingjie Yan1  Daihong Jiang2  You-Hui Su3  Fenghua Liu3 
[1] College of Sciences, China University of Mining and Technology, Xuzhou, China;School of Electrical Engineering, Xuzhou University of Technology, Xuzhou, China;School of Mathematics and Physics, Xuzhou University of Technology, Xuzhou, China
关键词: time scales;    variational structure;    homoclinic orbits;    critical point theorem;    34B15;    34C25;    34N05;   
DOI  :  10.1186/s13662-017-1098-1
学科分类:数学(综合)
来源: SpringerOpen
PDF
【 摘 要 】

In this paper, we study the existence of nontrivial homoclinic orbits of a dynamic equation on time scalesT$\mathbb{T}$of the form{(p(t)uΔ(t))Δ+qσ(t)uσ(t)=f(σ(t),uσ(t)),△-a.e. t∈T,u(±∞)=uΔ(±∞)=0.$$ \left \{ \textstyle\begin{array}{l} ( p(t)u^{\Delta}(t) ) ^{\Delta}+q^{\sigma}(t)u^{\sigma}(t)= f(\sigma(t),u^{\sigma}(t)),\quad \triangle\text{-a.e. } t\in\mathbb{T}, \\ u(\pm\infty)=u^{\Delta}(\pm\infty)=0. \end{array}\displaystyle \right . $$We construct a variational framework of the above-mentioned problem, and some new results on the existence of a homoclinic orbit or an unbounded sequence of homoclinic orbits are obtained by using the mountain pass lemma and the symmetric mountain pass lemma, respectively. The interesting thing is that the variational method and the critical point theory are used in this paper. It is notable that in our study any periodicity assumptions onp(t)$p(t)$,q(t)$q(t)$andf(t,u)$f(t,u)$are not required.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201904025973034ZK.pdf 1630KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:7次