期刊论文详细信息
Boundary value problems
Lipschitz stability in an inverse problem for the Korteweg-de Vries equation on a finite domain
Mo Chen1 
[1] School of Mathematics and Statistics, Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun, P.R. China
关键词: inverse problem;    Korteweg-de Vries equation;    Carleman estimate;    35R30;    35Q53;   
DOI  :  10.1186/s13661-017-0779-8
学科分类:数学(综合)
来源: SpringerOpen
PDF
【 摘 要 】

In this paper, we address an inverse problem for the Korteweg-de Vries equation posed on a bounded domain with boundary conditions proposed by Colin and Ghidaglia. More precisely, we retrieve the principal coefficient from the measurements of the solution on a part of the boundary and also at some positive time in the whole space domain. The Lipschitz stability of this inverse problem relies on a Carleman estimate for the linearized Korteweg-de Vries equation and the Bukhgeı̌m-Klibanov method.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201904025907167ZK.pdf 1241KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:7次