期刊论文详细信息
Advances in Difference Equations
Formulation of Euler-Lagrange and Hamilton equations involving fractional operators with regular kernel
Antonio Coronel-Escamilla2  Ricardo Fabricio Escobar-Jimnez5  Dumitru Baleanu6  Jos Francisco Gmez-Aguilar7  Arturo Abundez-Pliego8  Victor Hugo Olivares-Peregrino9 
[1] CONACYT - Centro Nacional de InvestigacióCentro Nacional de InvestigacióDepartment of Mathematics and Computer Sciences, Faculty of Art and Sciences, Cankaya University, Ankara, Turkey;Institute of Space Sciences, Magurele-Bucharest, Romania;gico Nacional de Mégico, Tecnolón y Desarrollo Tecnolóxico;xico, Cuernavaca, Mé
关键词: Pais-Uhlenbeck oscillator;    two-electric pendulum;    Caputo-Fabrizio operator;    Atangana-Baleanu-Caputo operator;    Crank-Nicholson scheme;    Euler-Lagrange formalism;   
DOI  :  10.1186/s13662-016-1001-5
学科分类:数学(综合)
来源: SpringerOpen
PDF
【 摘 要 】

This paper presents alternative representations to traditional calculus of the Euler-Lagrangian equations, in the alternative representations these equations contain fractional operators. In this work, we consider two problems, the Lagrangian of a Pais-Uhlenbeck oscillator and the Hamiltonian of a two-electric pendulum model where the fractional operators have a regular kernel. The Euler-Lagrange formalism was used to obtain the dynamic model based on the Caputo-Fabrizio operator and the new fractional operator based on the Mittag-Leffler function. The simulations showed the effectiveness of these two representations for different values of γ.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201904025559596ZK.pdf 1755KB PDF download
  文献评价指标  
  下载次数:23次 浏览次数:10次