Advances in Difference Equations | |
Formulation of Euler-Lagrange and Hamilton equations involving fractional operators with regular kernel | |
Antonio Coronel-Escamilla2  Ricardo Fabricio Escobar-Jimnez5  Dumitru Baleanu6  Jos Francisco Gmez-Aguilar7  Arturo Abundez-Pliego8  Victor Hugo Olivares-Peregrino9  | |
[1] CONACYT - Centro Nacional de InvestigacióCentro Nacional de InvestigacióDepartment of Mathematics and Computer Sciences, Faculty of Art and Sciences, Cankaya University, Ankara, Turkey;Institute of Space Sciences, Magurele-Bucharest, Romania;gico Nacional de Mégico, Tecnolón y Desarrollo Tecnolóxico;xico, Cuernavaca, Mé | |
关键词: Pais-Uhlenbeck oscillator; two-electric pendulum; Caputo-Fabrizio operator; Atangana-Baleanu-Caputo operator; Crank-Nicholson scheme; Euler-Lagrange formalism; | |
DOI : 10.1186/s13662-016-1001-5 | |
学科分类:数学(综合) | |
来源: SpringerOpen | |
【 摘 要 】
This paper presents alternative representations to traditional calculus of the Euler-Lagrangian equations, in the alternative representations these equations contain fractional operators. In this work, we consider two problems, the Lagrangian of a Pais-Uhlenbeck oscillator and the Hamiltonian of a two-electric pendulum model where the fractional operators have a regular kernel. The Euler-Lagrange formalism was used to obtain the dynamic model based on the Caputo-Fabrizio operator and the new fractional operator based on the Mittag-Leffler function. The simulations showed the effectiveness of these two representations for different values of γ.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201904025559596ZK.pdf | 1755KB | download |