期刊论文详细信息
Advances in Difference Equations
An exponential B-spline collocation method for the fractional sub-diffusion equation
Zhanbin Yuan1  Zongze Yang1  Xiaogang Zhu1  Yufeng Nie2  Jungang Wang2 
[1] Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, P.R. China
关键词: fractional sub-diffusion equation;    exponential B-spline collocation method;    unique solvability;    unconditional stability;   
DOI  :  10.1186/s13662-017-1328-6
学科分类:数学(综合)
来源: SpringerOpen
PDF
【 摘 要 】

In this article, we propose an exponential B-spline approach to obtain approximate solutions for the fractional sub-diffusion equation of Caputo type. The presented method is established via a uniform nodal collocation strategy by using an exponential B-spline based interpolation in conjunction with an effective finite difference scheme in time. The unique solvability is rigorously proved. The unconditional stability is well illustrated via a procedure closely resembling the classic von Neumann technique. A series of numerical examples are carried out, and by contrast to other algorithms available in the open literature, numerical results confirm the validity and superiority of our method.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201904024918550ZK.pdf 1711KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:17次