| Frontiers in Applied Mathematics and Statistics | |
| Sparse Phase Retrieval of One-Dimensional Signals by Prony's Method | |
| Beinert, Robert1  Plonka, Gerlind2  | |
| [1] Institut für Mathematik und Wissenschaftliches Rechnen, Karl-Franzens-Universitär Numerische und Angewandte Mathematik, Georg-August-Universität Göt Graz, Graz, Austria;ttingen, Göttingen, Germany | |
| 关键词: Sparse phase retrieval; Sparse signals; non-uniform spline functions; finite support; Prony'; s method; | |
| DOI : 10.3389/fams.2017.00005 | |
| 学科分类:数学(综合) | |
| 来源: Frontiers | |
PDF
|
|
【 摘 要 】
In this paper, we show that sparse signals f representable as a linear combination of a finite number N of spikes at arbitrary real locations or as a finite linear combination of B-splines of order m with arbitrary real knots can be almost surely recovered from O (N 2 ) intensity mea- surements â¡â¡â¡â¡F[f ](Ï)â¡â¡â¡â¡2 up to trivial ambiguities. The constructive proof consists of two steps, where in the first step the Prony method is applied to recover all parameters of the autocorre- lation function and in the second step the parameters of f are derived. Moreover, we present an algorithm to evaluate f from its Fourier intensities and illustrate it at different numerical examples.
【 授权许可】
CC BY
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201904024764312ZK.pdf | 1060KB |
PDF