期刊论文详细信息
Boundary value problems
Bilinear approach to quasi-periodic wave solutions of the Kersten-Krasil’shchik coupled KdV-mKdV system
Wenjuan Rui1  Xuemei Qi2 
[1] College of Science, China University of Mining and Technology, Xuzhou, P.R. China;School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, P.R. China
关键词: Riemann theta function;    soliton solutions;    quasi-periodic wave solution;    02.30.Ik;    02.30.Gp;    05.45.Yv;   
DOI  :  10.1186/s13661-016-0634-3
学科分类:数学(综合)
来源: SpringerOpen
PDF
【 摘 要 】

The Hirato bilinear method is extended to construct quasi-periodic wave solutions for the Kersten-Krasil’shchik coupled KdV-mKdV system. One- and two-periodic wave solutions are obtained by means of a multidimensional Riemann theta function. The asymptotic property of the quasi-periodic wave solutions is proved. It is shown that the quasi-periodic wave solutions reduce to the soliton solutions in an asymptotic small amplitude limit.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201904024653387ZK.pdf 1982KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:5次