期刊论文详细信息
Boundary value problems
Positive solutions of nonlinear Dirichlet BVPs in ODEs with time and space singularities
Alexander Spielauer1  Svatoslav Stank2  Ewa B Weinmller3  Irena Rachnkov3 
[1] University, Olomouc, Czech Republic;Department of Analysis and Scientific Computing, Vienna University of Technology, Wien, Austria;Department of Mathematical Analysis, Faculty of Science, Palacký
关键词: singular ordinary differential equation of the second order;    time singularities;    space singularities;    positive solutions;    existence of solutions;    polynomial collocation;   
DOI  :  10.1186/1687-2770-2013-6
学科分类:数学(综合)
来源: SpringerOpen
PDF
【 摘 要 】

In this paper, we discuss the existence of positive solutions to the singular Dirichlet boundary value problems (BVPs) for ordinary differential equations (ODEs) of the formu″(t)+atu′(t)−at2u(t)=f(t,u(t),u′(t)),u(0)=0,u(T)=0,wherea∈(−1,0). The nonlinearityf(t,x,y)may be singular for the space variablesx=0and/ory=0. Moreover, sincea≠0, the differential operator on the left-hand side of the differential equation is singular att=0. Sufficient conditions for the existence of positive solutions of the above BVPs are formulated and asymptotic properties of solutions are specified. The theory is illustrated by numerical experiments computed using the open domain MATLAB code bvpsuite, based on polynomial collocation. MSC:34B18, 34B16, 34A12.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201904024601632ZK.pdf 548KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:1次