期刊论文详细信息
Boundary value problems
Cauchy problem for the Laplace equation in a radially symmetric hollow cylinder
Yun-Jie Ma1  Chu-Li Fu2 
[1] School of Mathematics and Informational Science, Yantai University, Yantai, P.R. China;School of Mathematics and Statistics, Lanzhou University, Lanzhou, P.R. China
关键词: Cauchy problem for the Laplace equation;    hollow cylinder;    ill-posed problem;    regularization;    error estimates;    35R25;    35R30;   
DOI  :  10.1186/s13661-016-0702-8
学科分类:数学(综合)
来源: SpringerOpen
PDF
【 摘 要 】

In this paper, an axisymmetric Cauchy problem for the Laplace equation in an unbounded hollow cylinder is considered. The Cauchy data are given on the inside surface of the cylinder, and the solution on the whole domain is sought. We propose a Fourier method with a priori and a posteriori parameter choice rules to solve this ill-posed problem. It is shown that the approximate solutions are stably convergent to the exact ones with explicit error estimates. A further comparison in the numerical aspects demonstrates the effectiveness and accuracy of the presented methods.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201904024534804ZK.pdf 1881KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:8次