| Boundary value problems | |
| Nonlocal semilinear evolution equations without strong compactness: theory and applications | |
| Luisa Malaguti3  Irene Benedetti4  Valentina Taddei6  | |
| [1] di Modena e Reggio Emilia, Modena, Italy;di Modena e Reggio Emilia, Reggio Emilia, Italy;di Perugia, Perugia, Italy;Dipartimento di Matematica e Informatica, UniversitàDipartimento di Scienze Fisiche, Informatiche e Matematiche, UniversitàDipartimento di Scienze e Metodi dell’Ingegneria, Università | |
| 关键词: nonlocal condition; semilinear evolution equation; fixed point theorems; optimal feedback control problem; diffusion problem; age-structure population model; | |
| DOI : 10.1186/1687-2770-2013-60 | |
| 学科分类:数学(综合) | |
| 来源: SpringerOpen | |
PDF
|
|
【 摘 要 】
A semilinear multivalued evolution equation is considered in a reflexive Banach space. The nonlinear term has convex, closed, bounded values and a weakly sequentially closed graph when restricted to its second argument. No strong compactness is assumed, neither on the evolution operator generated by the linear part, or on the nonlinear term. A wide family of nonlocal associated boundary value problems is investigated by means of a fixed point technique. Applications are given to an optimal feedback control problem, to a nonlinear hyperbolic integro-differential equation arising in age-structure population models, and to a multipoint boundary value problem associated to a parabolic partial differential equation. MSC:34G25, 34B10, 34B15, 47H04, 28B20, 34H05.
【 授权许可】
CC BY
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201904024198042ZK.pdf | 424KB |
PDF