Boundary value problems | |
On the existence of solutions for nonhomogeneous Schrödinger-Poisson system | |
Shiwang Ma1  Xiaoming Wang2  Lixia Wang3  | |
[1] School of Mathematical Sciences and LPMC, Nankai University, Tianjin, China;School of Mathematics and Computer Science, Shangrao Normal University, Shangrao, China;School of Sciences, Tianjin Chengjian University, Tianjin, China | |
关键词: Schrödinger-Poisson systems; sublinear nonlinearities; concave and convex nonlinearities; variational methods; 35B33; 35J65; 35Q55; | |
DOI : 10.1186/s13661-016-0584-9 | |
学科分类:数学(综合) | |
来源: SpringerOpen | |
【 摘 要 】
In this paper, we study the existence of solutions for the following nonhomogeneous Schrödinger-Poisson systems:(∗){−Δu+V(x)u+K(x)ϕ(x)u=f(x,u)+g(x),x∈R3,−Δϕ=K(x)u2,lim|x|→+∞ϕ(x)=0,x∈R3,$$ (*) \quad \textstyle\begin{cases} -\Delta u +V(x)u+K(x)\phi(x)u =f(x,u)+g(x), &x\in\mathbb{R}^{3}, \\ -\Delta\phi=K(x)u^{2}, \qquad \lim_{|x|\rightarrow+\infty}\phi(x)=0, & x\in\mathbb{R}^{3}, \end{cases} $$wheref(x,u)$f(x,u)$is either sublinear in u as|u|→∞$|u|\rightarrow\infty$or a combination of concave and convex terms. Under some suitable assumptions, the existence of solutions is proved by using critical point theory.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201904024148136ZK.pdf | 1454KB | download |