期刊论文详细信息
Frontiers in Digital Humanities
Bayesian Inference of Subglacial Topography Using Mass Conservation
Truffer, Martin1  Aschwanden, Andy1  Brinkerhoff, Douglas J.1 
[1] Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA
关键词: subglacial topography;    Bayesian inference;    inverse methods;    Mass conservation;    continuity equation;    uncertainty quantification;    Jakobshavn Isbræ;    Storglaciaren;   
DOI  :  10.3389/feart.2016.00008
学科分类:社会科学、人文和艺术(综合)
来源: Frontiers
PDF
【 摘 要 】

We develop a Bayesian model for estimating ice thickness given sparse observations coupled with estimates of surface mass balance, surface elevation change, and surface velocity. These fields are related through mass conservation. We use the Metropolis-Hastings algorithm to sample from the posterior probability distribution of ice thickness for three cases: a synthetic mountain glacier, Storglaci\"aren, and Jakobshavn Isbr\ae. Use of continuity in interpolation improves thickness estimates where relative velocity and surface mass balance errors are small, a condition difficult to maintain in regions of slow flow and surface mass balance near zero. Estimates of thickness uncertainty depend sensitively on spatial correlation. When this structure is known, we suggest a thickness measurement spacing of one to two times the correlation length to take best advantage of continuity based interpolation techniques. To determine ideal measurement spacing, the structure of spatial correlation must be better quantified.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201904022549528ZK.pdf 6399KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:16次