期刊论文详细信息
Frontiers in Applied Mathematics and Statistics | |
Regularized Kernel Algorithms for Support Estimation | |
Rudi, Alessandro4  Odone, Francesca5  De Vito, Ernesto6  Verri, Alessandro7  | |
[1] di Genova, Italy;DIBRIS, UniversitàDipartimento di Matematica, UniversitàINRIAâSierra teamâÉLaboratory for Computational and Statistical Learning, Istituto Italiano di Tecnologia, Italy;cole Normale Supérieure, France | |
关键词: Support estimation; Kernel PCA; novelty detection; Dimensionality reduction.; Regularized kernel methods; | |
DOI : 10.3389/fams.2017.00023 | |
学科分类:数学(综合) | |
来源: Frontiers | |
【 摘 要 】
In the framework of non-parametric support estimation, we study the statistical properties of an estimator defined by means of Kernel Principal Component Analysis (KPCA). In the context of anomaly/novelty detection the algorithm was first introduced by Hoffmann in 2007. We also extend to above analysis to a larger class of set estimators defined in terms of a filter function.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201904022295384ZK.pdf | 2899KB | download |