期刊论文详细信息
Frontiers in Applied Mathematics and Statistics
Regularized Kernel Algorithms for Support Estimation
Rudi, Alessandro4  Odone, Francesca5  De Vito, Ernesto6  Verri, Alessandro7 
[1] di Genova, Italy;DIBRIS, UniversitàDipartimento di Matematica, UniversitàINRIA—Sierra team—ÉLaboratory for Computational and Statistical Learning, Istituto Italiano di Tecnologia, Italy;cole Normale Supérieure, France
关键词: Support estimation;    Kernel PCA;    novelty detection;    Dimensionality reduction.;    Regularized kernel methods;   
DOI  :  10.3389/fams.2017.00023
学科分类:数学(综合)
来源: Frontiers
PDF
【 摘 要 】

In the framework of non-parametric support estimation, we study the statistical properties of an estimator defined by means of Kernel Principal Component Analysis (KPCA). In the context of anomaly/novelty detection the algorithm was first introduced by Hoffmann in 2007. We also extend to above analysis to a larger class of set estimators defined in terms of a filter function.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201904022295384ZK.pdf 2899KB PDF download
  文献评价指标  
  下载次数:18次 浏览次数:27次