期刊论文详细信息
AIMS Mathematics
On the integrality of the first and second elementary symmetricfunctions of $1, 1/2^{s_2}, ...,1/n^{s_n}$
关键词: ;    elementary symmetric function;    integrality;    Bertrand’s postulate;    p-adic valuation;   
DOI  :  10.3934/Math.2017.4.682
学科分类:数学(综合)
来源: AIMS Press
PDF
【 摘 要 】

It is well known that the harmonic sum $H_{n}(1)=\sum_{1\leq k\leq n}\frac{1}{k}$is never an integer for $n>1$. Erd\"{o}s and Niven proved in 1946 thatthe multiple harmonic sum$H_{n}(\{1\}^r)=\sum_{1\leq k_{1}<\cdots< k_{r}\leq n}\frac{1}{k_{1}\cdots k_{r}}$can take integer values for at most finite many integers $n$. In 2012, Chenand Tang refined this result by showing that $H_{n}(\{1\}^r)$ is an integeronly for $(n,r)=(1,1)$ and $(n,r)=(3,2)$. In this paper, we consider theintegrality problem for the first and second elementary symmetric functionof $1, 1/2^{s_2}, ...,$ $1/n^{s_n}$, we show that none of themis an integer with some natural exceptions.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201904022273167ZK.pdf 204KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:3次