Advances in Difference Equations | |
Sign-changing solutions to Schrödinger-Kirchhoff-type equations with critical exponent | |
Liping Xu1  Haibo Chen2  | |
[1] Department of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, P.R. China;School of Mathematics and Statistics, Central South University, Changsha, P.R. China | |
关键词: Schrödinger-Kirchhoff-type equations; critical nonlinearity; positive solutions; sign-changing solutions; variational methods; 35J20; 35J65; 35J60; | |
DOI : 10.1186/s13662-016-0828-0 | |
学科分类:数学(综合) | |
来源: SpringerOpen | |
【 摘 要 】
In this paper, we study the following Schrödinger-Kirchhoff-type equations:{−(a+b∫R3|∇u|2dx)△u+u=k(x)|u|2∗−2u+μh(x)uin R3,u∈H1(R3),$$ \textstyle\begin{cases}-(a+b\int_{\mathrm{R}^{3}}|\nabla u|^{2}\,dx)\triangle u+u= k(x)|u|^{2^{*}-2}u+\mu h(x)u \quad\mbox{in } \mathrm{R}^{3},\\ u\in H^{1}(\mathrm{R}^{3}), \end{cases} $$wherea,b,μ>0$a, b,\mu>0$are constants,2∗=6$2^{*}=6$is the critical Sobolev exponent in three spatial dimensions. Under appropriate assumptions on nonnegative functionsk(x)$k(x)$andh(x)$h(x)$, we establish the existence of positive and sign-changing solutions by variational methods.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201904022057268ZK.pdf | 1574KB | download |