期刊论文详细信息
Frontiers in Applied Mathematics and Statistics
A Deep Learning Approach to Diabetic Blood Glucose Prediction
van der Walt, Maria D.1  Mhaskar, Hrushikesh N.2  Pereverzyev, Sergei V.3 
[1] Department of Mathematics, Vanderbilt University, Nashville, TN, United States;Institute of Mathematical Sciences, Claremont Graduate University, Claremont, CA, United States;Johann Radon Institute, Linz, Austria
关键词: deep learning;    Diffusion geometry;    Continuous glucose monitoring;    Blood glucose prediction;    Deep neural network;   
DOI  :  10.3389/fams.2017.00014
学科分类:数学(综合)
来源: Frontiers
PDF
【 摘 要 】

We consider the question of 30-minute prediction of blood glucose levels measured by continuous glucose monitoring devices, using clinical data. While most studies of this nature deal with one patient at a time, we take a certain percentage of patients in the data set as training data, and test on the remainder of the patients; i.e., the machine need not re-calibrate on the new patients in the data set. We demonstrate how deep learning can outperform shallow networks in this example. One novelty is to demonstrate how a parsimonious deep representation can be constructed using domain knowledge.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201904021610449ZK.pdf 1613KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:7次