期刊论文详细信息
Advances in Difference Equations
Global analysis of a delayed Monod type chemostat model with impulsive input on two substrates
Peiguang Wang1  Jianzhi Cao2  Junyan Bao2 
[1] College of Electronic and Information Engineering, Hebei University, Baoding, P.R. China;College of Mathematics and Information Science, Hebei University, Baoding, P.R. China
关键词: Monod type;    globally attractivity;    nutrient recycling;    chemostat model;    34K45;    34K20;   
DOI  :  10.1186/s13662-015-0623-3
学科分类:数学(综合)
来源: SpringerOpen
PDF
【 摘 要 】

In this paper, a new Monod type chemostat model with delay and impulsive input on two substrates is considered. By using the global attractivity of a k times periodically pulsed input chemostat model, we obtain the bound of the system. By the means of a fixed point in a Poincaré map for the discrete dynamical system, we obtain a semi-trivial periodic solution; further, we establish the sufficient conditions for the global attractivity of the semi-trivial periodic solution. Using the theory on delay functional and impulsive differential equations, we obtain a sufficient condition with time delay for the permanence of the system.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201904021180081ZK.pdf 1689KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:18次