期刊论文详细信息
Advances in Difference Equations
Sampled-data state estimation for neural networks of neutral type
Manfeng Hu1  Yongqing Yang2  Xianyun Xu2  Changchun Yang2 
[1] Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, Wuxi, China;School of Science, Jiangnan University, Wuxi, China
关键词: neural network;    sampled-data;    state estimation;    neutral type;    LMIs;   
DOI  :  10.1186/1687-1847-2014-138
学科分类:数学(综合)
来源: SpringerOpen
PDF
【 摘 要 】

In this paper, the sampled-data state estimation is investigated for a class of neural networks of neutral type. By employing a suitable Lyapunov functional, a delay-dependent criterion is established to guarantee the existence of the sampled-data estimator. The estimator gain matrix can be obtained by solving linear matrix inequalities (LMIs). A numerical example is given to show the effectiveness of the proposed method.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201904021075914ZK.pdf 318KB PDF download
  文献评价指标  
  下载次数:23次 浏览次数:11次